Олимпиадные задачи из источника «весенний тур, тренировочный вариант, 10-11 класс» для 2-7 класса - сложность 2-3 с решениями

Даны 103 монеты одинакового внешнего вида. Известно, что две из них – фальшивые, что все настоящие одинакового веса, что фальшивые – тоже одинакового веса, отличающегося от веса настоящих монет. Но неизвестно, в какую сторону отличаются веса фальшивых монет от настоящих. Как можно это узнать с помощью трёх взвешиваний на двухчашечных весах без гирь? (Отделить фальшивые монеты не требуется.)

Докажите, что

   а) если натуральное число <i>n</i> можно представить в виде  <i>n</i> = 4<i>k</i> + 1,  то существуют <i>n</i> нечётных натуральных чисел, сумма которых равна их произведению;

   б) если <i>n</i> нельзя представить в таком виде, то таких <i>n</i> нечётных натуральных чисел не существует.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка