Олимпиадные задачи из источника «осенний тур, основной вариант, 8-9 класс» для 5-9 класса - сложность 3-5 с решениями

В колоду сложено <i>n</i> различных карт. Разрешается переложить любое число рядом лежащих карт (не меняя порядок их следования и не переворачивая) в другое место колоды. Требуется несколькими такими операциями переложить все <i>n</i> карт в обратном порядке.

  а) Докажите, что при  <i>n</i> = 9  это можно сделать за 5 операций;

Докажите, что при  <i>n</i> = 52  это

  б) можно сделать за 27 операций;

  в) нельзя сделать за 17 операций;

  г) нельзя сделать за 26 операций.

Числовая последовательность {<i>x<sub>n</sub></i>} такова, что для каждого  <i>n</i> > 1  выполняется условие:  <i>x</i><sub><i>n</i>+1</sub> = |<i>x<sub>n</sub>| – x</i><sub><i>n</i>–1</sub>.

Докажите, что последовательность периодическая с периодом 9.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка