Олимпиадные задачи из источника «осенний тур, тренировочный вариант, 8-9 класс» для 3-10 класса - сложность 2-3 с решениями

Вершины правильного треугольника расположены на сторонах <i>AB</i>, <i>CD</i> и <i>EF</i> правильного шестиугольника <i>ABCDEF</i>.

Докажите, что эти треугольник и шестиугольник имеют общий центр.

Доска 100×100 разбита на 10000 единичных квадратиков. Один из них вырезали, так что образовалась дырка. Можно ли оставшуюся часть доски покрыть равнобедренными прямоугольными треугольниками с гипотенузой длины 2 так, чтобы их гипотенузы шли по сторонам квадратиков, а катеты – по диагоналям и чтобы треугольники не налегали друг на друга и не свисали с доски?

Найдите 10 различных натуральных чисел, обладающих тем свойством, что их сумма делится на каждое из них.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка