Олимпиадные задачи из источника «весенний тур, основной вариант, 10-11 класс» для 7-8 класса - сложность 1-3 с решениями
весенний тур, основной вариант, 10-11 класс
НазадДана фиксированная хорда <i>MN</i> окружности, не являющаяся диаметром. Для каждого диаметра <i> AB </i> этой окружности, не проходящего через точки <i>M</i> и <i>N</i>, рассмотрим точку <i>C</i>, в которой пересекаются прямые <i>AM</i> и <i>BN</i>, и проведём через неё прямую <i>l</i>, перпендикулярную <i>AB</i>. Докажите, что все прямые <i>l</i> проходят через одну точку.
В соревновании участвуют 32 боксёра. Каждый боксёр в течение одного дня может проводить только один бой. Известно, что все боксёры имеют разную силу, и что сильнейший всегда выигрывает. Докажите, что за 15 дней можно определить место каждого боксёра.
(Расписание каждого дня соревнований составляется вечером накануне и в день соревнований не изменяется.)