Олимпиадные задачи из источника «весенний тур, тренировочный вариант, 10-11 класс» для 5-7 класса - сложность 2 с решениями

Четыре кузнечика сидели в вершинах квадрата. Каждую секунду один из кузнечиков прыгает через другого в симметричную точку (если <i>A</i> прыгает через <i>B</i> в точку <i>A</i><sub>1</sub>, то векторы   <img align="top" src="/storage/problem-media/98261/problem_98261_img_2.gif">   и   <img align="top" src="/storage/problem-media/98261/problem_98261_img_3.gif">   равны). Докажите, что три кузнечика не могут оказаться

  а) на одной прямой, параллельной стороне квадрата;

  б) на одной произвольной прямой.  

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка