Олимпиадные задачи из источника «осенний тур, основной вариант, 8-9 класс» для 10 класса - сложность 3-5 с решениями

Есть доска 1×1000, вначале пустая, и куча из <i>n</i> фишек. Двое ходят по очереди. Первый своим ходом "выставляет" на доску не более 17 фишек по одной на любое свободное поле (он может взять все 17 из кучи, а может часть – из кучи, а часть – переставить на доске). Второй снимает с доски любую <i>серию</i> фишек (серия – это несколько фишек, стоящих подряд, то есть без свободных полей между ними) и кладёт их обратно в кучу. Первый выигрывает, если ему удастся выставить все фишки в ряд без пробелов.

  а) Докажите, что при  <i>n</i> = 98  первый всегда может выиграть.

  б) При каком наибольшем <i>n</i> первый всегда может выиграть?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка