Олимпиадные задачи из источника «осенний тур, тренировочный вариант, 8-9 класс» для 4-11 класса - сложность 2 с решениями

Окружность пересекает каждую сторону ромба в двух точках и делит её на три отрезка. Обойдём контур ромба, начав с какой-нибудь вершины, по часовой стрелке, и покрасим три отрезка каждой стороны последовательно в красный, белый и синий цвета. Докажите, что сумма длин красных отрезков равна сумме длин синих.

а) Может ли случиться, что в компании из 10 девочек и 9 мальчиков все девочки знакомы с разным числом мальчиков, а все мальчики – с одним и тем же числом девочек?

б) А если девочек 11, а мальчиков 10?

При каких целых значениях <i>n</i> правильный треугольник со стороной <i>n</i> можно замостить плитками, имеющими форму равнобочной трапеции со сторонами 1, 1, 1, 2?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка