Олимпиадные задачи из источника «осенний тур, тренировочный вариант, 10-11 класс» для 5-9 класса - сложность 2 с решениями

На полях <i>A, B</i> и <i>C</i> в левом нижнем углу шахматной доски стоят белые ладьи (см. рис.). Разрешается делать ходы по обычным правилам, однако после любого хода каждая ладья должна быть под защитой какой-нибудь другой ладьи. Можно ли за несколько ходов переставить ладьи так, чтобы каждая попала на обозначенное той же буквой поле в правом верхнем углу? <div align="center"><img src="/storage/problem-media/98541/problem_98541_img_2.gif"></div>

На квадратном торте расположены треугольные шоколадки, которые не соприкасаются между собой. Всегда ли можно разрезать торт на выпуклые многоугольники так, чтобы каждый многоугольник содержал ровно одну шоколадку? (Торт считайте плоским квадратом.)

Существуют 1000 последовательных натуральных чисел, среди которых нет ни одного простого числа (например,  1001! + 2,  1001! + 3, ...,   1001! + 1001).

А существуют ли 1000 последовательных натуральных чисел, среди которых ровно пять простых чисел?

<i>Высотой</i> пятиугольника назовём отрезок перпендикуляра, опущенного из вершины на противоположную сторону, а <i>медианой</i> – отрезок, соединяющий вершину с серединой противоположной стороны. Известно, что в некотором пятиугольнике равны десять длин – длины всех высот и всех медиан. Докажите, что этот пятиугольник – правильный.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка