Олимпиадные задачи из источника «весенний тур, основной вариант, 8-9 класс» для 1-11 класса - сложность 3-4 с решениями

Есть шоколадка в форме равностороннего треугольника со стороной <i>n</i>, разделённая бороздками на равносторонние треугольники со стороной 1. Играют двое. За ход можно отломать от шоколадки треугольный кусок вдоль бороздки, съесть его, а остаток передать противнику. Тот, кто получит последний кусок – треугольник со стороной 1, – победитель. Для каждого <i>n</i> выясните, кто из играющих может всегда выигрывать, как бы не играл противник?

Трапеция с основаниями <i>AD</i> и <i>BC</i> описана вокруг окружности, <i>E</i> – точка пересечения её диагоналей. Докажите, что угол <i>AED</i> не может быть острым.

Какое наибольшее число клеток доски 9×9 можно разрезать по обеим диагоналям, чтобы при этом доска не распалась на несколько частей?

В однокруговом турнире участвовали 15 команд.

  а) Докажите, что хотя бы в одной игре встретились команды, которые перед этой игрой участвовали в сумме в нечётном числе игр этого турнира.

  б) Могла ли такая игра быть единственной?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка