Олимпиадные задачи из источника «весенний тур, основной вариант, 8-9 класс» для 9-10 класса - сложность 2 с решениями
весенний тур, основной вариант, 8-9 класс
НазадВысоты <i>AA'</i> и <i>BB'</i> треугольника <i>ABC</i> пересекаются в точке <i>H</i>. Точки <i>X</i> и <i>Y</i> – середины отрезков <i>AB</i> и <i>CH</i> соответственно.
Доказать, что прямые <i>XY</i> и <i>A'B'</i> перпендикулярны.
На циферблате правильно идущих часов барона Мюнхгаузена есть только часовая, минутная и секундная стрелки, а все цифры и деления стёрты. Барон утверждает, что может определять время по этим часам, поскольку, по его наблюдению, на них в течение дня (с 8.00 до 19.59) не повторяется два раза одно и то же расположение стрелок. Верно ли наблюдение барона? (Стрелки имеют различную длину, движутся равномерно.)
На графике квадратного трёхчлена с целыми коэффициентами отмечены две точки с целыми координатами.
Докажите, что если расстояние между ними – целое число, то соединяющий их отрезок параллелен оси абсцисс.