Олимпиадные задачи из источника «32 турнир (2010/2011 год)» для 10 класса - сложность 1-2 с решениями
32 турнир (2010/2011 год)
НазадВ пространстве с декартовой системой координат дан прямоугольный параллелепипед, вершины которого имеют целочисленные координаты. Его объём равен 2011. Докажите, что рёбра параллелепипеда параллельны координатным осям.
У барона Мюнхгаузена есть 50 гирь. Веса этих гирь – различные натуральные числа, не превосходящие 100, а суммарный вес гирь – чётное число. Барон утверждает, что нельзя часть этих гирь положить на одну чашу весов, а остальные – на другую чашу так, чтобы весы оказались в равновесии. Могут ли эти слова барона быть правдой?
По кругу лежат 100 белых камней. Дано целое число <i>k</i> в пределах от 1 до 50. За ход разрешается выбрать любые <i>k</i> подряд идущих камней, первый и последний из которых белые, и покрасить первый и последний камни в чёрный цвет. При каких <i>k</i> можно за несколько таких ходов покрасить все 100 камней в чёрный цвет?
Грани выпуклого многогранника – подобные треугольники.
Докажите, что многогранник имеет две пары равных граней (одну пару равных граней и еще одну пару равных граней).
Длина взрослого червяка 1 метр. Если червяк взрослый, его можно разрезать на две части в любом отношении длин. При этом получаются два новых червяка, которые сразу начинают расти со скоростью 1 метр в час каждый. Когда длина червяка достигает метра, он становится взрослым и прекращает расти. Можно ли из одного взрослого червяка получить 10 взрослых червяков быстрее чем за час?
Имеется многоугольник. Для каждой стороны поделим её длину на сумму длин всех остальных сторон. Затем сложим все получившиеся дроби. Докажите, что полученная сумма меньше 2.
Диагонали выпуклого четырёхугольника <i>ABCD</i> перпендикулярны и пересекаются в точке <i>O</i>. Известно, что сумма радиусов окружностей, вписанных в треугольники <i>AOB</i> и <i>COD</i>, равна сумме радиусов окружностей, вписанных в треугольники <i>BOC</i> и <i>DOA</i>. Докажите, что
а) четырёхугольник <i>ABCD</i> – описанный;
б) четырёхугольник <i>ABCD</i> симметричен относительно одной из своих диагоналей.