Олимпиадные задачи из источника «4 турнир (1982/1983 год)» для 10-11 класса - сложность 3 с решениями

В Швамбрании <i>N</i> городов, каждые два соединены дорогой. При этом дороги сходятся лишь в городах (нет перекрёстков, одна дорога поднята эстакадой над другой). Злой волшебник устанавливает на всех дорогах одностороннее движение таким образом, что если из города можно выехать, то в него нельзя вернуться. Доказать, что

  а) волшебник может это сделать;

  б) найдётся город, из которого можно добраться до всех, и найдётся город, из которого нельзя выехать;

  в) существует единственный путь, обходящий все города;

  г) волшебник может осуществить своё намерение <i>N</i>! способами.

Доказать, что из 17 различных натуральных чисел либо найдутся пять таких чисел <i>a, b, c, d, e</i>, что каждое из чисел этой пятёрки, кроме последнего, делится на число, стоящее за ним, либо найдутся пять таких чисел, что ни одно из них не делится на другое.

Докажите для каждого натурального числа  <i>n</i> > 1  равенство:   [<i>n</i><sup>1/2</sup>] + [<i>n</i><sup>1/3</sup>] + ... + [<i>n</i><sup>1/<i>n</i></sup>] = [log<sub><sub>2</sub></sub><i>n</i>] + [log<sub><sub>3</sub></sub><i>n</i>] + ... + [log<i><sub>n</sub>n</i>].

а) 10 точек, делящие окружность на 10 равных дуг, попарно соединены пятью хордами. Обязательно ли среди них найдутся две хорды одинаковой длины?б) 20 точек, делящие окружность на 20 равных дуг, попарно соединены 10 хордами. Докажите, что среди них обязательно найдутся две хорды одинаковой длины?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка