Олимпиадные задачи из источника «устный тур» для 9 класса - сложность 3 с решениями

Дан бесконечный запас белых, синих и красных кубиков. По кругу расставляют любые $N$ из них. Робот, став в любое место круга, идёт по часовой стрелке и, пока не останется один кубик, постоянно повторяет такую операцию: уничтожает два ближайших кубика перед собой и ставит позади себя новый кубик того же цвета, если уничтоженные одинаковы, и третьего цвета, если уничтоженные двух разных цветов. Назовём расстановку кубиков <i>хорошей</i>, если цвет оставшегося в конце кубика не зависит от места, с которого стартовал робот. Назовём $N$ <i>удачным</i>, если при любом выборе $N$ кубиков все их расстановки хорошие. Найдите все удачные $N$.

<i>Первая производная</i> бесконечной последовательности $a_1, a_2$, ... – это последовательность  $a'n = a{n+1} - a_n$  (где  $n$ = 1, 2, ...), а её <i>k-я производная</i> – это первая производная её ($k$–1)-й производной

($k$ = 2, 3, ...).  Назовём последовательность <i>хорошей</i>, если она и все её производные состоят из положительных чисел. Докажите, что если $a_1, a_2$, ... и $b_1, b_2$, ... – хорошие последовательности, то и $a_1b_1, a_2b_2$, ... – хорошая последовательность.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка