Олимпиадные задачи из источника «весенний тур, сложный вариант, 8-9 класс»
весенний тур, сложный вариант, 8-9 класс
НазадВ отель ночью приехали $100$ туристов. Они знают, что в отеле есть одноместные номера $1$, $2, \ldots, n$, из которых $k$ на ремонте (но неизвестно какие), а остальные свободны. Туристы могут заранее договориться о своих действиях, после чего по очереди уходят заселяться: каждый проверяет номера в любом порядке, находит первый свободный номер не на ремонте и остаётся там ночевать. Но туристы не хотят беспокоить друг друга: нельзя проверять номер, куда уже кто-то заселился. Для каждого $k$ укажите наименьшее $n$, при котором туристы гарантированно смогут заселиться, не потревожив друг друга.
В центре каждой клетки клетчатого прямоугольника $M$ расположена точечная лампочка, изначально все они погашены. За ход разрешается провести любую прямую, не задевающую лампочек, и зажечь все лампочки по какую-то одну сторону от этой прямой, если все они погашены. Каждым ходом должна зажигаться хотя бы одна лампочка. Требуется зажечь все лампочки, сделав как можно больше ходов. Какое максимальное число ходов удастся сделать, если
а) $M$ – квадрат $21\times21$;
б) $M$ – прямоугольник $20\times21$?
Путешественник прибыл на остров, где живут 50 аборигенов, каждый из которых либо рыцарь, либо лжец. Все аборигены встали в круг, и каждый назвал сначала возраст своего соседа слева, а потом возраст соседа справа. Известно, что каждый рыцарь назвал оба числа верно, а каждый лжец какой-то из возрастов (по своему выбору) увеличил на 1, а другой – уменьшил на 1. Всегда ли путешественник по высказываниям аборигенов сможет определить, кто из них рыцарь, а кто лжец?
Треугольник $ABC$ равносторонний. На сторонах $AB$ и $AC$ выбрали точки $E$ и $F$, а на продолжении стороны $AB$ – точку $K$ так, что $AE=CF=BK$. Точка $P$ – середина $EF$. Докажите, что угол $KPC$ прямой.
В комнате находится несколько детей и куча из 1000 конфет. Дети по очереди подходят к куче. Каждый подошедший делит количество конфет в куче на количество детей в комнате, округляет (если получилось нецелое), забирает полученное число конфет и выходит из комнаты. При этом мальчики округляют вверх, а девочки – вниз. Докажите, что суммарное количество конфет у мальчиков, когда все выйдут из комнаты, не зависит от порядка детей в очереди.
Число $2021 = 43\cdot47$ составное. Докажите, что если вписать в числе $2021$ сколько угодно восьмёрок между $20$ и $21$, тоже получится составное число.
Пусть $p$ и $q$ – взаимно простые натуральные числа. Лягушка прыгает по числовой прямой, начиная в точке $0$, каждый раз либо на $p$ вправо, либо на $q$ влево. Однажды лягушка вернулась в $0$. Докажите, что для любого натурального $d < p + q$ найдутся два числа, посещенные лягушкой и отличающиеся на $d$.