Олимпиадные задачи из источника «осенний тур, сложный вариант, 8-9 класс» для 10-11 класса - сложность 1-3 с решениями

Барон Мюнхгаузен утверждает, что нарисовал многоугольник и точку внутри него так, что любая прямая, проходящая через эту точку, делит этот многоугольник на три многоугольника. Может ли барон быть прав?

Для каждого из чисел 1, 19, 199, 1999 и т. д. изготовили одну отдельную карточку и записали на ней это число. а) Можно ли выбрать не менее трёх карточек так, чтобы сумма чисел на них равнялась числу, все цифры которого, кроме одной, – двойки?

б) Пусть выбрали несколько карточек так, что сумма чисел на них равна числу, все цифры которого, кроме одной, – двойки. Какой может быть его цифра, отличная от двойки?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка