Олимпиадные задачи из источника «45 турнир (2023/2024 год)» для 6 класса - сложность 2-3 с решениями

На асфальте нарисована полоса $1\times10$ для игры в «классики». Из центра первого квадрата надо сделать 9 прыжков по центрам квадратов (иногда вперёд, иногда назад) так, чтобы побывать в каждом квадрате по одному разу и закончить маршрут в последнем квадрате. Аня и Варя обе прошли полосу, и каждый очередной прыжок Ани был на то же расстояние, что и очередной прыжок Вари. Обязательно ли они пропрыгали квадраты в одном и том же порядке?

На урок физкультуры пришло 12 детей, все разной силы. Учитель 10 раз делил их на две команды по 6 человек, каждый раз новым способом, и проводил состязание по перетягиванию каната. Могло ли оказаться так, что все 10 раз состязание закончилось вничью (то есть суммы сил детей в командах были равны)?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка