Олимпиадные задачи из источника «45 турнир (2023/2024 год)» для 9 класса - сложность 4 с решениями
45 турнир (2023/2024 год)
НазадУ Вани есть клетчатая бумага двух видов: белая и чёрная. Он вырезает кусок из любой бумаги и наклеивает на серую клетчатую доску $45\times 45$, делая так много раз. Какое минимальное число кусков нужно наклеить, чтобы «раскрасить» клетки доски в шахматном порядке? (Каждый кусок – набор клеток, в котором от любой клетки до любой другой можно пройти, переходя из клетки в соседнюю через их общую сторону. Можно наклеивать куски один поверх другого. Все клетки имеют размер $1\times 1$.)
Назовём<i>полоской</i>клетчатый многоугольник, который можно пройти целиком, начав из какой-то его клетки и далее двигаясь только в двух направлениях — вверх или вправо. Несколько таких одинаковых полосок можно вставить друг в друга, сдвигая на вектор (–1, 1). Докажите, что для любой полоски, состоящей из чётного числа клеток, найдётся такое нечётное $k$, что если объединить $k$ таких же полосок, вставив их последовательно друг в друга, то полученный многоугольник можно будет разделить по линиям сетки на две равные части. (На рисунке приведён пример.)<img width="200" src="/storage/problem-media/67435/problem_67435_img_2.png">
Таблица 2×2024 заполнена целыми числами, причём в первой строке стоят числа из набора {1, ..., 2023}. Оказалось, что какие бы два столбца мы ни выбрали, разность их чисел из первой строки делится на разность их чисел из второй строки. Известно, что все числа во второй строке попарно различны. Обязательно ли тогда все числа в первой строке равны между собой?
Хорда $DE$ описанной около треугольника $ABC$ окружности пересекает стороны $AB$ и $BC$ в точках $P$ и $Q$ соответственно, точка $P$ лежит между $D$ и $Q$. В треугольниках $ADP$ и $QEC$ провели биссектрисы $DF$ и $EG$. Оказалось, что точки $D$, $F$, $G$, $E$ лежат на одной окружности. Докажите, что точки $A$, $P$, $Q$, $C$ лежат на одной окружности.
На белых клетках шахматной доски 100×100 стоят 100 слонов, среди которых есть белые и чёрные. Они могут делать ходы в любом порядке и бить слонов противоположного цвета. Какого наименьшего числа ходов заведомо достаточно, чтобы на доске остался один слон?
Пекарь испёк прямоугольный лаваш и разрезал его на $n^2$ прямоугольников, сделав $n–1$ горизонтальных разрезов и $n–1$ вертикальных. Оказалось, что округлённые до целого числа площади получившихся прямоугольников равны всем натуральным числам от $1$ до $n^2$ в некотором порядке. Для какого наибольшего $n$ это могло произойти? (Полуцелые числа округляются вверх.)
Кощей придумал для Ивана-дурака испытание. Он дал Ивану волшебную дудочку, на которой можно играть только две ноты – до и си. Для прохождения испытания Ивану нужно сыграть какую-нибудь мелодию из 300 нот на свой выбор. Но до того, как он начнёт играть, Кощей выбирает и объявляет запретными одну мелодию из пяти нот, одну – из шести нот, ..., одну – из 30 нот. Если в какой-то момент последние сыгранные ноты образуют одну из запретных мелодий, дудочка перестаёт звучать. Сможет ли Иван пройти испытание, какие бы мелодии Кощей ни объявил запретными?