Олимпиадные задачи из источника «осенний тур, сложный вариант, 10-11 класс» для 9-11 класса - сложность 3-4 с решениями
осенний тур, сложный вариант, 10-11 класс
НазадЗамок Мерлина состоит из 100 комнат и 1000 коридоров. Каждый коридор соединяет какие-то две комнаты, каждые две комнаты соединены не более чем одним коридором. Мерлин выдал мудрецам план замка и объявил испытание. Мудрецы должны будут распределиться по комнатам, как хотят. Далее каждую минуту Мерлин указывает коридор, и один из мудрецов переходит по нему из комнаты на любом его конце в комнату на другом его конце. Мерлин победит, если когда-то укажет коридор, на концах которого нет мудрецов. Число $m$ назовём<i>волшебным числом замка</i>, если $m$ мудрецов могут, сговорившись перед испытанием, действовать так, чтобы никогда не проиграть, причём $m$ — минимальное такое число. Чему может равняться волшебное число замка? (Все, включая Мерлина, всегда знают расположение всех мудрец...
Дана окружность $\omega_1$, а внутри неё — окружность $\omega_2$. Выбирают произвольную окружность $\omega_3$, которая касается двух предыдущих, причём оба касания внутренние. Точки касания соединяют отрезком, а через точку пересечения этого отрезка с окружностью $\omega_2$ проводят касательную к $\omega_2$ и получают хорду окружности $\omega_3$. Докажите, что концы всех таких хорд (полученных при всевозможных выборах окружности $\omega_3$) лежат на фиксированной окружности.<img height="250" src="/storage/problem-media/67495/problem_67495_img_2.png">
Существует ли такая бесконечная последовательность действительных чисел $a_1$, $a_2$, $a_3$, ..., что $a_1 = 1$ и для всех натуральных $k$ выполняется равенство $$a_k = a_{2k} + a_{3k} + a_{4k} + \ldots ?$$
Известно, что каждый прямоугольный параллелепипед обладает свойством: квадрат его объёма равен произведению площадей трёх его граней, имеющих общую вершину. А существует ли параллелепипед, который обладает этим же свойством, но не является прямоугольным?
Клетчатую доску $20\times 20$ разбили на двухклеточные доминошки. Докажите, что некоторая прямая содержит центры хотя бы десяти из этих доминошек.