Олимпиадные задачи из источника «19 (1996), математика» для 11 класса - сложность 2-5 с решениями
19 (1996), математика
НазадПетя разрезал прямоугольный лист бумаги по прямой. Затем он разрезал по прямой один из получившихся кусков. Затем он проделал то же самое с одним из трёх получившихся кусков и т.д. Докажите, что после достаточного количества разрезаний можно будет выбрать среди получившихся кусков 100 многоугольников с одинаковым числом вершин (например, 100 треугольников или 100 четырёхугольников и т.д.).
Дан бумажный круг. Можно ли с помощью ножниц разрезать его на несколько частей, из которых складывается квадрат той же площади? (Резать разрешается по прямым и дугам окружностей).
Существует ли выпуклый многогранник, имеющий 12 рёбер, которые соответственно равны и параллельны 12 диагоналям граней куба?