Олимпиадные задачи из источника «Региональный этап» для 5-9 класса - сложность 4 с решениями

Улицы города Дужинска – простые ломаные, не пересекающиеся между собой во внутренних точках. Каждая улица соединяет два перекрёстка и покрашена в один из трёх цветов: белый, красный или синий. На каждом перекрёстке сходятся ровно три улицы, по одной каждого цвета. Перекрёсток называется <i>положительным</i>, если при его обходе против часовой стрелки цвета улиц идут в следующем порядке: белый, синий, красный, и <i>отрицательным</i> в противном случае. Докажите, что разность между числом положительных и числом отрицательных перекрёстков кратна 4.

На прямоугольном столе разложено несколько одинаковых квадратных листов бумаги так, что их стороны параллельны краям стола (листы могут перекрываться). Докажите, что можно воткнуть несколько булавок таким образом, что каждый лист будет прикреплен к столу ровно одной булавкой.

Окружности<i> S</i>1и<i> S</i>2с центрами<i> O</i>1и<i> O</i>2пересекаются в точках<i> A </i>и<i> B </i>(см рис.). Луч<i> O</i>1<i>B </i>пересекает окружность<i> S</i>2в точке<i> F </i>, а луч<i> O</i>2<i>B </i>пересекает окружность<i> S</i>1в точке<i> E </i>. Прямая, проходящая через точку<i> B </i>параллельно прямой<i> EF </i>, вторично пересекает окружности<i> S</i>1и<i> S</i>2в точках<i> M </i>и<i> N </i>соответственно. Докажите, что<i> MN=AE+AF </i>.

Дан четырёхугольник<i> ABCD </i>, в котором<i> AB=AD </i>и<i> <img src="/storage/problem-media/108192/problem_108192_img_2.gif"> ABC=<img src="/storage/problem-media/108192/problem_108192_img_2.gif"> ADC=</i>90<i><sup>o</sup> </i>. На сторонах<i> BC </i>и<i> CD </i>выбраны соответственно точки<i> F </i>и<i> E </i>так, что<i> DF <img src="/storage/problem-media/108192/problem_108192_img_3.gif"> AE </i>. Докажите, что<i> AF <img src="/storage/problem-media/108192/problem_108192_img_3.gif"> BE </i>.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка