Олимпиадные задачи из источника «Региональный этап» для 8 класса - сложность 3-4 с решениями

Можно ли в таблице 11×11 расставить натуральные числа от 1 до 121 так, чтобы числа, отличающиеся друг от друга на единицу, располагались в клетках с общей стороной, а все точные квадраты попали в один столбец?

Найдите все такие простые числа <i>p</i>, что число  <i>p</i>² + 11  имеет ровно шесть различных делителей (включая единицу и само число).

Окружности<i> S</i>1и<i> S</i>2с центрами<i> O</i>1и<i> O</i>2пересекаются в точках<i> A </i>и<i> B </i>(см рис.). Луч<i> O</i>1<i>B </i>пересекает окружность<i> S</i>2в точке<i> F </i>, а луч<i> O</i>2<i>B </i>пересекает окружность<i> S</i>1в точке<i> E </i>. Прямая, проходящая через точку<i> B </i>параллельно прямой<i> EF </i>, вторично пересекает окружности<i> S</i>1и<i> S</i>2в точках<i> M </i>и<i> N </i>соответственно. Докажите, что<i> MN=AE+AF </i>.

Окружности<i> S</i>1и<i> S</i>2с центрами<i> O</i>1и<i> O</i>2пересекаются в точках<i> A </i>и<i> B </i>. Окружность, проходящая через точки<i> O</i>1,<i> O</i>2и<i> A </i>, вторично пересекает окружность<i> S</i>1в точке<i> D </i>, окружность<i> S</i>2– в точке<i> E </i>, а прямую<i> AB </i>– в точке<i> C </i>. Докажите, что<i> CD=CB=CE </i>.

Две окружности радиусов<i> R </i>и<i> r </i>касаются прямой<i> l </i>в точках<i> A </i>и<i> B </i>и пересекаются в точках<i> C </i>и<i> D </i>. Докажите, что радиус окружности, описанной около треугольника<i> ABC </i>не зависит от длины отрезка<i> AB </i>.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка