Олимпиадные задачи из источника «9 Класс» для 10 класса - сложность 1-5 с решениями

Среди 11 внешне одинаковых монет 10 настоящих, весящих по 20 г, и одна фальшивая, весящая 21 г. Имеются чашечные весы, которые оказываются в равновесии, если груз на правой их чашке ровно вдвое тяжелее, чем на левой. (Если груз на правой чашке меньше, чем удвоенный груз на левой, то перевешивает левая чашка, если больше, то правая.) Как за три взвешивания на этих весах найти фальшивую монету?

Среди натуральных чисел от 1 до 1200 выбрали 372 различных числа так, что никакие два из них не различаются на 4, 5 или 9. Докажите, что число 600 является одним из выбранных.

Бесконечная возрастающая арифметическая прогрессия, состоящая из натуральных чисел, содержит точный куб натурального числа.

Докажите, что она содержит и точный куб, не являющийся точным квадратом.

25 мальчиков и несколько девочек собрались на вечеринке и обнаружили забавную закономерность. Если выбрать любую группу не меньше чем из 10 мальчиков, а потом добавить к ним всех девочек, знакомых хотя бы с одним из этих мальчиков, то в получившейся группе число мальчиков окажется на 1 меньше, чем число девочек. Докажите, что некоторая девочка знакома не менее чем с 16 мальчиками.

Петя придумал 1004 приведённых квадратных трёхчлена  <i>f</i><sub>1</sub>, ...,  <i>f</i><sub>1004</sub>,  среди корней которых встречаются все целые числа от 0 до 2007. Вася рассматривает всевозможные уравнения  <i>f<sub>i</sub> = f<sub>j</sub></i>  (<i>i ≠ j</i>),  и за каждый найденный у них корень Петя платит Васе по рублю. Каков наименьший возможный доход Васи?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка