Олимпиадные задачи из источника «10 Класс» для 4-8 класса - сложность 3-4 с решениями

На бесконечной в обе стороны ленте бумаги выписаны все целые числа, каждое – ровно по одному разу.

Могло ли оказаться, что между каждыми двумя числами не стоит их среднее арифметическое?

На острове живут100рыцарей и100лжецов, у каждого из них есть хотя бы один друг. Рыцари всегда говорят правду, а лжецы всегда лгут. Однажды утром каждый житель произнес либо фразу "Все мои друзья – рыцари", либо фразу "Все мои друзья – лжецы", причем каждую из фраз произнесло ровно100человек. Найдите наименьшее возможное число пар друзей, один из которых рыцарь, а другой – лжец.

В очереди к стоматологу стоят 30 ребят: мальчиков и девочек. Часы на стене показывают 8:00. Как только начинается новая минута, каждый мальчик, за которым стоит девочка, пропускает её вперед. Докажите, что перестановки в очереди закончатся до 8:30, когда откроется дверь кабинета.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка