Олимпиадные задачи из источника «2009-2010» для 10 класса - сложность 2 с решениями
2009-2010
НазадНенулевые числа <i>a, b, c</i> таковы, что <i>ax</i>² + <i>bx + c > cx</i> при любом <i>x</i>. Докажите, что <i>cx</i>² – <i>bx + a > cx – b</i> при любом <i>x</i>.
Целые числа <i>a, b, c</i> таковы, что значения квадратных трёхчленов <i>bx</i>² + <i>cx + a</i> и <i>cx</i>² + <i>ax + b</i> при <i>x</i> = 1234 совпадают.
Может ли первый трёхчлен при <i>x</i> = 1 принимать значение 2009?
В основании четырёхугольной пирамиды<i> SABCD </i>лежит параллелограмм<i> ABCD </i>. Докажите, что для любой точки<i> O </i>внутри пирамиды сумма объёмов тетраэдров<i> OSAB </i>и<i> OSCD </i>равна сумме объёмов тетраэдров<i> OSBC </i>и<i> OSDA </i>.
Углы треугольника<i> α, β, γ </i>удовлетворяют неравенствам<i> sin α > cos β, sin β > cos γ, sin γ > cos α </i>. Докажите, что треугольник остроугольный.