Олимпиадные задачи из источника «10 (2017 год)» для 11 класса - сложность 2 с решениями

Согласно одной неправдоподобной легенде, Коши и Буняковский очень любили по вечерам играть в дартс. Но мишень у них была необычная – секторы на ней были неравные, так что вероятности попасть в разные секторы были не одинаковы. Однажды Коши бросил дротик и попал в мишень. Следующим бросает Буняковский. Что более вероятно: что Буняковский попадёт в тот же сектор, в который попал Коши, или что он попадёт в следующий сектор по часовой стрелке? <div align="center"><img src="/storage/problem-media/66057/problem_66057_img_2.gif"></div>

Имеется <i>n</i> случайных векторов вида  (<i>y</i><sub>1</sub>, <i>y</i><sub>2</sub>, <i>y</i><sub>3</sub>),  где ровно одна случайная координата равна 1, остальные равны 0. Их складывают. Получается случайный вектор <i><b>a</b></i> с координатами  (<i>Y</i><sub>1</sub>, <i>Y</i><sub>2</sub>, <i>Y</i><sub>3</sub>).

  а) Найдите математическое ожидание случайной величины <i><b>a</b></i>².

  б) Докажите, что  <img align="absmiddle" src="/storage/problem-media/66053/problem_66053_img_2.gif">

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка