Олимпиадные задачи из источника «10 (2017 год)» для 8 класса - сложность 3-4 с решениями
10 (2017 год)
НазадПоследовательность состоит из 19 единиц и 49 нулей, стоящих в случайном порядке. Назовём группой максимальную подпоследовательность из одинаковых символов. Например, в последовательности 110001001111 пять групп: две единицы, потом три нуля, потом одна единица, потом два нуля и, наконец, четыре единицы. Найдите математическое ожидание длины первой группы.
Игровой круг в телевикторине "Что? Где? Когда?" разбит на 13 одинаковых секторов. Секторы пронумерованы числами от 1 до 13. В каждом секторе в начале игры лежит конверт с вопросом. Игроки выбирают случайный сектор с помощью волчка со стрелкой. Если этот сектор уже выпадал прежде, то конверта в нём уже нет, и тогда играет следующий по часовой стрелке сектор. Если он тоже пуст, – следующий и т.д., пока не встретится непустой сектор. До перерыва игроки разыграли шесть секторов.
а) Что более вероятно: что в числе разыгранных есть сектор №1 или что среди разыгранных есть сектор №8?
б) Найдите вероятность того, что в результате оказались разыграны подряд шесть секторов с номерами от 1 до 6.