Олимпиадные задачи по математике для 7-8 класса - сложность 4 с решениями
В остроугольном треугольнике проведены высоты <i>AA'</i> и <i>BB'</i>. На дуге <i>ACB</i> описанной окружности треугольника <i>ABC</i> выбрана точка <i>D</i>. Пусть прямые <i>AA'</i> и <i>BD</i> пересекаются в точке <i>P</i>, а прямые <i>BB'</i> и <i>AD</i> пересекаются в точке <i>Q</i>. Докажите, что прямая <i>A'B'</i> проходит через середину отрезка <i>PQ</i>.
а) Из картона вырезали 7 выпуклых многоугольников и положили на стол так, что любые 6 из них можно прибить к столу двумя гвоздями, а все 7 нельзя. Приведите пример таких многоугольников и их расположения. (Многоугольники могут перекрываться.) б) Из картона вырезали 8 выпуклых многоугольников и положили на стол так, что любые 7 из них можно прибить к столу двумя гвоздями, а все 8 — нельзя. Приведите пример таких многоугольников и их расположения. (Многоугольники могут перекрываться.)
Через середину <i>C</i> произвольной хорды <i>AB</i> окружности проведены две хорды <i>KL</i> и <i>MN</i> (точки <i>K</i> и <i>M</i> лежат по одну сторону от <i>AB</i>). Отрезок <i>KN</i> пересекает <i>AB</i> в точке <i>P</i>. Отрезок <i>LM</i> пересекает <i>AB</i> в точке <i>Q</i>. Докажите, что <i>PC = QC</i>. <small>Также доступны документы в формате <a href="https://problems.ru/images/problem_52460_img_6.gif">TeX</a></small>