Олимпиадные задачи по математике для 9 класса
На бесконечном белом листе клетчатой бумаги конечное число клеток окрашено в чёрный цвет так, что у каждой чёрной клетки чётное число (0, 2 или 4) белых клеток, соседних с ней по стороне. Докажите, что каждую белую клетку можно окрасить в красный или зелёный цвет так, чтобы у каждой чёрной клетки стало поровну красных и зелёных клеток, соседних с ней по стороне.
У 10 детей есть несколько мешков с конфетами. Дети начинают делить конфеты между собой. Каждый по очереди забирает из каждого мешка свою долю и уходит. Доля вычисляется так: делим текущее число конфет в каждом мешке на число оставшихся детей (включая себя), если нацело не поделилось — округляем до целого в меньшую сторону. Может ли всем достаться разное количество конфет, а) если мешков всего 8; б) если мешков всего 9?
В каждой клетке таблицы $N\times N$ записано число. Назовём клетку<i>хорошей</i>, если сумма чисел строки, содержащей эту клетку, не меньше, чем сумма чисел столбца, содержащего эту клетку. Найдите наименьшее возможное количество хороших клеток.
Для какого наибольшего $N$ существует $N$-значное число со свойством: в его десятичной записи среди любых нескольких подряд идущих цифр какая-то цифра встречается ровно один раз?
Для каждого многочлена степени 45 с коэффициентами 1, 2, 3, ..., 46 (в каком-то порядке) Вася выписал на доску все его различные действительные корни. Затем он увеличил все числа на доске на 1. Каких чисел на доске оказалось больше: положительных или отрицательных?
Назовём двуклетчатую карточку $2\times 1$<i>правильной</i>, если в ней записаны два натуральных числа, причём число в верхней клетке меньше числа в нижней клетке. За ход разрешается изменить оба числа на карточке: либо прибавить к каждому одно и то же целое число (возможно, отрицательное), либо умножить каждое на одно и то же натуральное число, либо разделить каждое на одно и то же натуральное число; при этом карточка должна остаться правильной. За какое наименьшее количество таких ходов из любой правильной карточки можно получить любую другую правильную карточку?
Петя и Вася по очереди красят рёбра $N$-угольной пирамиды: Петя – в красный цвет, а Вася – в зелёный (ребро нельзя красить дважды). Начинает Петя. Выигрывает Вася, если после того, как все рёбра окрашены, из любой вершины пирамиды в любую другую вершину ведёт ломаная, состоящая из зелёных рёбер. В противном случае выигрывает Петя. Кто из игроков может действовать так, чтобы всегда выигрывать, как бы ни играл его соперник?
Пусть $n$ – натуральное число. Назовём последовательность $a_1, a_2, ..., a_n$ <i>интересной</i>, если для каждого $i$ = 1, 2, ..., $n$ верно одно из равенств $a_i = i$ или $a_i = i$ + 1. Назовём интересную последовательность <i>чётной</i>, если сумма её членов чётна, и <i>нечётной</i> – иначе. Для каждой нечётной интересной последовательности нашли произведение её чисел и записали его на первый листок. Для каждой чётной – сделали то же самое и записали на второй листок. На каком листке сумма чисел больше и на сколько? (Дайте ответ в зависимости от $n$.)
Прямоугольник 1×3 будем называть <i>триминошкой</i>. Петя и Вася независимо друг от друга разбивают доску 20×21 на триминошки. Затем они сравнивают полученные разбиения, и Петя платит Васе столько рублей, сколько триминошек в этих двух разбиениях совпали (оказались на одинаковых позициях). Какую наибольшую сумму выигрыша может гарантировать себе Вася независимо от действий Пети?