Олимпиадные задачи по математике для 5-8 класса - сложность 4 с решениями

Можно ли прямоугольник $5 \times 7$ покрыть уголками из трёх клеток (т.е. фигурками, которые получаются из квадрата $2 \times 2$ удалением одной клетки), не выходящими за его пределы, в несколько слоёв так, чтобы каждая клетка прямоугольника была покрыта одинаковым числом клеток, принадлежащих уголкам?

а) Каждую сторону четырёхугольника в процессе обхода по часовой стрелке продолжили на её длину. Оказалось, что новые концы построенных отрезков служат вершинами квадрата. Докажите, что исходный четырёхугольник – квадрат. б) Докажите, что если в результате такой же процедуры из некоторого <i>n</i>-угольника получается правильный <i>n</i>-угольник, то исходный многоугольник – правильный.

Существует ли описанный 2021-угольник, все вершины и центр вписанной окружности которого имеют целочисленные координаты?

Существуют ли 100 таких натуральных чисел, среди которых нет одинаковых, что куб одного из них равен сумме кубов остальных?

В остроугольном треугольнике $ABC$ проведены высоты $AA_1$ и $CC_1$. Окружность, описанная вокруг треугольника $A_1BC_1$, проходит через точку $M$ пересечения медиан. Найдите все возможные значения величины угла $B$.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка