Олимпиадные задачи по математике для 5-8 класса - сложность 3-4 с решениями
Дан остроугольный треугольник <i>ABC</i>. Окружность, проходящая через вершину <i>B</i> и центр <i>O</i> его описанной окружности, вторично пересекает стороны <i>BC</i> и <i>BA</i> в точках <i>P</i> и <i>Q</i> соответственно. Докажите, что ортоцентр треугольника <i>POQ</i> лежит на прямой <i>AC</i>.
Четырёхугольник <i>ABCD</i> вписан в окружность с диаметром <i>AC</i>. Точки <i>K</i> и <i>M</i> – проекции вершин <i>A</i> и <i>C</i> соответственно на прямую <i>BD</i>. Через точку <i>K</i> проведена прямая, параллельная <i>BC</i> и пересекающая <i>AC</i> в точке <i>P</i>. Докажите, что угол <i>KPM</i> – прямой.
Разрежьте неравносторонний треугольник на четыре подобных треугольника, среди которых не все одинаковы.