Олимпиадные задачи по математике для 10 класса - сложность 1-2 с решениями
Найдите все такие пары натуральных чисел <i>x, y</i>, что числа <i>x</i>³ + <i>y</i> и <i>y</i>³ + <i>x</i> делятся на <i>x</i>² + <i>y</i>².
Натуральные числа <i>m</i> и <i>n</i> взаимно просты (не имеют общего делителя, отличного от единицы). Дробь <img align="absmiddle" src="/storage/problem-media/98481/problem_98481_img_2.gif"> можно сократить на число <i>d</i>.
Каково наибольшее возможное значение <i>d</i>?