Олимпиадные задачи по математике для 7-8 класса - сложность 4-5 с решениями

В семейном альбоме есть десять фотографий. На каждой из них изображены три человека: в центре стоит мужчина, слева от мужчины – его сын, а справа – его брат. Какое наименьшее количество различных людей может быть изображено на этих фотографиях, если известно, что все десять мужчин, стоящих в центре, различны?

Доказать, что в выпуклый равносторонний (но не обязательно правильный) пятиугольник можно поместить правильный треугольник так, что одна из его сторон будет совпадать со стороной пятиугольника, а весь треугольник будет лежать внутри этого пятиугольника.

Для каких <i>n</i> существует такая замкнутая несамопересекающаяся ломаная из <i>n</i> звеньев, что каждая прямая, содержащая одно из звеньев этой ломаной, содержит ещё хотя бы одно её звено?

Дан квадрат со<nobr>стороной 1.</nobr>От него отсекают четыре<nobr>уголка —</nobr>четыре треугольника, у каждого из которых две стороны идут по сторонам квадрата и составляют 1/3 их длины. С полученным 8-угольником делают то же самое: от каждой вершины отрезают треугольник, две стороны которого составляют по 1/3 соответствующих сторон 8-угольника, и так далее. Получается последовательность многоугольников (каждый содержится в предыдущем). Найдите площадь фигуры, являющейся пересечением всех этих многоугольников (то есть образованной точками, принадлежащими всем многоугольникам).

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка