Олимпиадные задачи по математике для 9 класса - сложность 4-5 с решениями

Дан правильный треугольник<i> ABC </i>. Через вершину<i> B </i>проводится произвольная прямая<i> l </i>, а через точки<i> A </i>и<i> C </i>проводятся прямые, перпендикулярные прямой<i> l </i>, пересекающие её в точках<i> D </i>и<i> E </i>. Затем, если точки<i> D </i>и<i> E </i>различны, строятся правильные треугольники<i> DEP </i>и<i> DET </i>, лежащие по разные стороны от прямой<i> l </i>. Найдите геометрическое место точек<i> P </i>и<i> T </i>.

Двое играют в «крестики–нолики» на бесконечном листе клетчатой бумаги. Начинающий ставит крестик в любую клетку. Каждым следующим своим ходом он должен ставить крестик в свободную клетку, соседнюю с одной из клеток, где уже стоит крестик; соседней с данной клеткой считаем любую, имеющую с ней общую сторону или общую вершину. Второй играющий каждым своим ходом может ставить сразу три нолика в любые три свободные клетки (не обязательно рядом друг с другом или с ранее поставленными ноликами). На рисунке изображена одна из позиций, которые могут возникнуть после третьего хода. Докажите, что как бы ни играл первый игрок, второй может его «запереть»: добиться того, чтобы первому было некуда поставить крестик. Исследуйте аналогичные игры, в которых второму разрешено за один ход ставить не три, а...

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка