Олимпиадные задачи по математике для 2-7 класса - сложность 1-2 с решениями

Окружность <i>S</i> с центром <i>O</i> и окружность <i>S'</i> пересекаются в точках <i>A</i> и <i>B</i>. На дуге окружности <i>S</i>, лежащей внутри <i>S'</i>, взята точка <i>C</i>. Точки пересечения прямых <i>AC</i> и <i>BC</i> с <i>S'</i>, отличные от <i>A</i> и <i>B</i>, обозначим через <i>E</i> и <i>D</i> соответственно. Докажите, что прямые <i>DE</i> и <i>OC</i> перпендикулярны.

Пусть <i>O</i> – центр описанной окружности остроугольного треугольника <i>ABC, S<sub>A</sub>, S<sub>B</sub>, S<sub>C</sub></i> – окружности с центром <i>O</i>, касающиеся сторон <i>BC, CA</i> и <i>AB</i> соответственно. Докажите, что сумма трёх углов: между касательными к <i>S<sub>A</sub></i>, проведёнными из точки <i>A</i>, к <i>S<sub>B</sub></i> – из точки <i>B</i>, и к <i>S<sub>C</sub></i> – из точки <i>C</i>, равна 180°.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка