Олимпиадные задачи по математике - сложность 4 с решениями

В стране есть <i>N</i> городов. Некоторые пары из них соединены беспосадочными двусторонними авиалиниями. Оказалось, что для любого <i>k</i>  (2 ≤ <i>k ≤ N</i>)  при любом выборе <i>k</i> городов количество авиалиний между этими городами не будет превосходить  2<i>k</i> – 2.  Докажите, что все авиалинии можно распределить между двумя авиакомпаниями так, что не будет замкнутого авиамаршрута, в котором все авиалинии принадлежат одной компании.

На столе лежат купюры достоинством 1, 2,<i> .. </i>,2<i>n </i>тугриков. Двое ходят по очереди. Каждым ходом игрок снимает со стола две купюры, большую отдает сопернику, а меньшую забирает себе. Каждый стремится получить как можно больше денег. Сколько тугриков получит начинающий при правильной игре?

а) В 99 ящиках лежат яблоки и апельсины.

Докажите, что можно так выбрать 50 ящиков, что в них окажется не менее половины всех яблок и не менее половины всех апельсинов. б) В 100 ящиках лежат яблоки и апельсины.

Докажите, что можно так выбрать 34 ящика, что в них окажется не менее трети всех яблок и не менее трети всех апельсинов.

Даны  <i>N</i>≥ 3  точек, занумерованных числами 1, 2, ...,<i>N</i>. Каждые две точки соединены стрелкой от меньшего номера к большему. Раскраску всех стрелок в красный и синий цвета назовем<i>однотонной</i>, если нет двух таких точек<i>A</i>и<i>B</i>, что от<i>A</i>до<i>B</i>можно добраться и по красным стрелкам, и по синим. Найдите количество однотонных раскрасок.

Каждая клетка клетчатой плоскости раскрашена в один из<i>n</i>² цветов так, что в каждом квадрате из<i>n×</i>клеток встречаются все цвета. Известно, что в какой-то строке встречаются все цвета. Докажите, что существует столбец, раскрашенный ровно в<i>n</i>цветов.

В прямоугольной таблице 9 строк и 2004 столбца. В её клетках расставлены числа от 1 до 2004, каждое – по 9 раз. При этом в каждом столбце числа различаются не более чем на 3. Найдите минимальную возможную сумму чисел в первой строке.

Решите в натуральных числах уравнение  (1 + <i>n<sup>k</sup></i>)<sup><i>l</i></sup> = 1 + <i>n<sup>m</sup></i>,  где  <i>l</i> > 1.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка