Олимпиадные задачи по математике для 11 класса - сложность 4 с решениями
На рёбрах произвольного тетраэдра выбрано по точке. Через каждую тройку точек, лежащих на рёбрах с общей вершиной, проведена плоскость. Докажите, что если три из четырёх проведённых плоскостей касаются вписанного в тетраэдр шара, то и четвёртая плоскость также его касается.
Докажите, что если для чисел <i>p</i><sub>1</sub>, <i>p</i><sub>2</sub>, <i>q</i><sub>1</sub> и <i>q</i><sub>2</sub> выполнено неравенство (<i>q</i><sub>1</sub> – <i>q</i><sub>2</sub>)² + (<i>p</i><sub>1</sub> – <i>p</i><sub>2</sub>)(<i>p</i><sub>1</sub><i>q</i><sub>2</sub> – <i>p</i><sub>2</sub><i>q</i><sub>1</sub>) < 0, то квадратные трёхчлены
<i>x</i>² + <i>p</i><sub>1</sub><i>x</i> + <i>q</i><sub>1</sub> и <i>x</i&...