Олимпиадные задачи по математике для 6-11 класса - сложность 1 с решениями

Вписанная в тетраэдр<i> ABCD </i>сфера касается его граней<i> ABC </i>,<i> ABD </i>,<i> ACD </i>и<i> BCD </i>в точках<i> D<sub>1</sub> </i>,<i> C<sub>1</sub> </i>,<i> B<sub>1</sub> </i>и<i> A<sub>1</sub> </i>соответственно. Рассмотрим плоскость, равноудаленную от точки<i> A </i>и плоскости<i> B<sub>1</sub>C<sub>1</sub>D<sub>1</sub> </i>и три другие аналогично построенные плоскости. Докажите, что тетраэдр, образованный этими четырьмя плоскостями, имеет тот же центр описанной сферы, что и тетраэдр<i> ABCD </i>.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка