Олимпиадные задачи по математике для 5-7 класса - сложность 1-2 с решениями
Последовательность определяется так: первые её члены – 1, 2, 3, 4, 5. Далее каждый следующий (начиная с 6-го) равен произведению всех предыдущих членов минус 1. Докажите, что сумма квадратов первых 70 членов последовательности равна их произведению.
Пусть <i>a, b, c, d</i> – такие вещественные числа, что <i>a</i>³ + <i>b</i>³ + <i>c</i>³ + <i>d</i>³ = <i>a + b + c + d</i> = 0.
Докажите, что сумма каких-то двух из этих чисел равна нулю.