Олимпиадные задачи по математике для 6-10 класса - сложность 3 с решениями
Биссектрисы углов<i> A </i>и<i> C </i>треугольника<i> ABC </i>пересекают описанную около него окружность в точках<i> E </i>и<i> D </i>соответственно. Отрезок<i> DE </i>пересекает стороны<i> AB </i>и<i> BC </i>в точках<i> F </i>и<i> G </i>. Пусть<i> I </i>– точка пересечения биссектрис треугольника<i> ABC </i>. Докажите, что четырёхугольник<i> BFIG </i>– ромб.