Олимпиадные задачи по математике для 7-9 класса - сложность 3-5 с решениями

Биссектрисы углов<i> A </i>и<i> C </i>треугольника<i> ABC </i>пересекают описанную около него окружность в точках<i> E </i>и<i> D </i>соответственно. Отрезок<i> DE </i>пересекает стороны<i> AB </i>и<i> BC </i>в точках<i> F </i>и<i> G </i>. Пусть<i> I </i>– точка пересечения биссектрис треугольника<i> ABC </i>. Докажите, что четырёхугольник<i> BFIG </i>– ромб.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка