Олимпиадные задачи по математике для 6-8 класса - сложность 4-5 с решениями
У Вани есть клетчатая бумага двух видов: белая и чёрная. Он вырезает кусок из любой бумаги и наклеивает на серую клетчатую доску $45\times 45$, делая так много раз. Какое минимальное число кусков нужно наклеить, чтобы «раскрасить» клетки доски в шахматном порядке? (Каждый кусок – набор клеток, в котором от любой клетки до любой другой можно пройти, переходя из клетки в соседнюю через их общую сторону. Можно наклеивать куски один поверх другого. Все клетки имеют размер $1\times 1$.)