Олимпиадные задачи по математике для 2-7 класса - сложность 3-4 с решениями

Вадик написал название своего родного города и все его циклические сдвиги (перестановки по кругу), получив таблицу 1. Затем, упорядочив эти ''слова'' по алфавиту, он составил таблицу 2 и выписал её последний столбец:<tt>ВКСАМО</tt>. Саша сделал то же самое с названием своего родного города и получил ''слово'' <tt>МТТЛАРАЕКИС</tt>. Что это за город, если его название начинается с буквы <tt>С</tt>?

<img src="/storage/problem-media/103897/problem_103897_img_2.gif">

Вдоль лыжной трассы расставлено в ряд бесконечное число кресел, занумерованных по порядку: 1, 2, 3, ... Кассирша продала билеты на первые <i>m</i> мест, но на некоторые места она продала не один билет, и общее число проданных билетов  <i>n > m</i>.  Зрители входят на трассу по одному. Каждый, подходя к месту, указанному на его билете, занимает его, если оно свободно, а если оно занято, говорит "Ох!" и идёт к следующему по номеру месту. Если оно свободно, то занимает его, если же занято, снова говорит "Ох!" и двигается дальше – до первого свободного места. Докажите, что общее количество "охов" не зависит от того, в каком порядке зрители выходят на трассу.

Кресла для зрителей вдоль лыжной трассы занумерованы по порядку: 1, 2, 3, ..., 1000. Кассирша продала <i>n</i> билетов на все первые 100 мест, но <i>n</i> больше 100, так как на некоторые места она продала больше одного билета (при этом  <i>n</i> < 1000).  Зрители входят на трассу по одному.Каждый, подойдя к своему месту, занимает его, если оно свободно, если же занято, говорит "Ох!", идёт в сторону роста номеров до первого свободного места и занимает его. Каждый раз, обнаружив очередное место занятым, он говорит "Ох!". Докажите, что число "охов" не зависит от того, в каком порядке зрители выходят на трассу.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка