Олимпиадные задачи по математике для 10 класса - сложность 2-5 с решениями
В некоторой стране суммарная зарплата 10% самых высокооплачиваемых работников составляет 90% зарплаты всех работников. Может ли так быть, что в каждом из регионов, на которые делится эта страна, зарплата любых 10% работников составляет не более 11% всей зарплаты, выплачиваемой в этом регионе?
В школе (где училось больше 5 учеников) подвели итоги учебного года. Выяснилось, что в каждом множестве из пяти и более учеников не менее 80% двоек, полученных этими учениками в течение года, поставлены не более чем 20% процентам учеников из этого множества. Докажите, что по крайней мере три четверти всех двоек, поставленных в школе, получил один ученик.
Пусть 1 + <i>x + x</i>² + ... + <i>x</i><sup><i>n</i>–1</sup> = <i>F</i>(<i>x</i>)<i>G</i>(<i>x</i>), где <i>F</i> и <i>G</i> – многочлены, коэффициенты которых – нули и единицы (<i>n</i> > 1).
Докажите, что один из многочленов <i>F</i>, <i>G</i> представим в виде (1 + <i>x + x</i>² + ... + <i>x</i><sup><i>k</i>–1</sup>)<i>T</i>(<i>x</i>), где <i>T</i>(<i>x</i>) – также многочлен с коэффициентами 0 и 1 (<i>k</i> > 1).
В ботаническом справочнике каждое растение характеризуется 100 признаками (каждый признак либо присутствует, либо отсутствует). Растения считаются <i>непохожими</i>, если они различаются не менее, чем по 51 признаку.
а) Покажите, что в справочнике не может находиться больше 50 попарно непохожих растений.
б) А может ли быть ровно 50?
Аня, Боря и Витя сидят по кругу за столом и едят орехи. Сначала все орехи у Ани. Она делит их поровну между Борей и Витей, а остаток (если он есть) съедает. Затем все повторяется: каждый следующий (по часовой стрелке) делит имеющиеся у него орехи поровну между соседями, а остаток съедает. Орехов много (больше 3). Докажите, что: a) хотя бы один орех будет съеден; б) все орехи не будут съедены.
Последовательность {<i>a<sub>n</sub></i>} определяется правилами: <i>a</i><sub>0</sub> = 9, <img align="absmiddle" src="/storage/problem-media/35392/problem_35392_img_2.gif"> .
Докажите, что в десятичной записи числа <i>a</i><sub>10</sub> содержится не менее 1000 девяток.