Олимпиадные задачи по математике для 5-11 класса - сложность 2-3 с решениями

В треугольнике <i>ABC</i> высоты или их продолжения пересекаются в точке <i>H</i>, а <i>R</i> – радиус его описанной окружности.

Докажите, что если  ∠<i>A</i> ≤ ∠<i>B</i> ≤ ∠<i>C</i>,  то  <i>AH + BH</i> ≥ 2<i>R</i>.

Найдите наименьшее натуральное<i>n</i>, для которого число<i>n<sup>n</sup></i>не является делителем числа 2008!.

  а) В ведро налили 12 литров молока. Пользуясь лишь сосудами в 5 и 7 л, разделите молоко на две равные части.

  б) Решите общую задачу: при каких <i>a</i> и <i>b</i> можно разделить пополам  <i>a + b</i>  литров молока, пользуясь лишь сосудами в <i>a</i> литров, <i>b</i> литров и  <i>a + b</i>  литров? За одно переливание из одного сосуда в другой можно вылить всё, что там есть, или долить второй сосуд до верха.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка