Олимпиадные задачи по математике для 11 класса - сложность 1-4 с решениями

Для любого треугольника можно вычислить сумму квадратов тангенсов половин его углов. Докажите, что эта сумма

  а) меньше 2 для любого остроугольного треугольника;

  б) не меньше 2 для любого тупоугольного треугольника, величина тупого угла которого больше или равна  2 arctg <sup>4</sup>/<sub>3</sub>;  а среди треугольников с тупым углом, меньшим  2 arctg <sup>4</sup>/<sub>3</sub>,  имеются и такие, сумма квадратов тангенсов половин углов которых больше 2, и такие, сумма квадратов тангенсов половин углов которых меньше 2.

Докажите, что любое натуральное число можно представить в виде  3<sup><i>u</i><sub>1</sub></sup>2<sup><i>v</i><sub>1</sub></sup> + 3<sup><i>u</i><sub>2</sub></sup>2<sup><i>v</i><sub>2</sub></sup> + ... + 3<sup><i>u<sub>k</sub></i></sup>2<sup><i>v<sub>k</sub></i></sup>,  где  <i>u</i><sub>1</sub> > <i>u</i><sub>2</sub> > ... > <i>u<sub>k</sub></i> ≥ 0  и  0 ≤ <i>v</i><sub>1</sub> < <i>v</i><sub>2</sub> < ... < <i>v<sub>k</sub&g...

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка