Олимпиадные задачи по математике для 11 класса - сложность 3-4 с решениями
Для любого треугольника можно вычислить сумму квадратов тангенсов половин его углов. Докажите, что эта сумма
а) меньше 2 для любого остроугольного треугольника;
б) не меньше 2 для любого тупоугольного треугольника, величина тупого угла которого больше или равна 2 arctg <sup>4</sup>/<sub>3</sub>; а среди треугольников с тупым углом, меньшим 2 arctg <sup>4</sup>/<sub>3</sub>, имеются и такие, сумма квадратов тангенсов половин углов которых больше 2, и такие, сумма квадратов тангенсов половин углов которых меньше 2.