Олимпиадные задачи по математике для 8-11 класса - сложность 4 с решениями
Для любого треугольника можно вычислить сумму квадратов тангенсов половин его углов. Докажите, что эта сумма
а) меньше 2 для любого остроугольного треугольника;
б) не меньше 2 для любого тупоугольного треугольника, величина тупого угла которого больше или равна 2 arctg <sup>4</sup>/<sub>3</sub>; а среди треугольников с тупым углом, меньшим 2 arctg <sup>4</sup>/<sub>3</sub>, имеются и такие, сумма квадратов тангенсов половин углов которых больше 2, и такие, сумма квадратов тангенсов половин углов которых меньше 2.
На белых клетках бесконечной шахматной доски, заполняющей верхнюю полуплоскость, записаны какие-то числа так, что для каждой чёрной клетки сумма чисел, стоящих в двух соседних с ней клетках – справа и слева, – равна сумме двух других чисел, стоящих в соседних с ней клетках – сверху и снизу. Известно число, стоящее в одной клетке <i>n</i>-й строки (крестик на рисунке), а требуется узнать число, стоящее над ним в (<i>n</i>+2)-й строке (знак вопроса на рисунке). Сколько ещё чисел, стоящих в двух нижних строках (точки на рисунке), нужно для этого знать? <div align="center"><img src="/storage/problem-media/73699/problem_73699_img_2.gif"> </div>