Олимпиадные задачи по математике для 10 класса - сложность 3-4 с решениями

Числовая последовательность {<i>x<sub>n</sub></i>} такова, что для каждого  <i>n</i> > 1  выполняется условие:  <i>x</i><sub><i>n</i>+1</sub> = |<i>x<sub>n</sub>| – x</i><sub><i>n</i>–1</sub>.

Докажите, что последовательность периодическая с периодом 9.

Докажите, что

   а) если натуральное число <i>n</i> можно представить в виде  <i>n</i> = 4<i>k</i> + 1,  то существуют <i>n</i> нечётных натуральных чисел, сумма которых равна их произведению;

   б) если <i>n</i> нельзя представить в таком виде, то таких <i>n</i> нечётных натуральных чисел не существует.

На бесконечной клетчатой бумаге отмечено шесть клеток (см. рисунок).

<div align="center"><img src="/storage/problem-media/97775/problem_97775_img_2.gif"></div>На некоторых клетках стоят фишки. Положение фишек разрешается преобразовывать по следующему правилу: если клетки соседняя сверху и соседняя справа от данной фишки обе свободны, то можно поставить в эти клетки по фишке, убрав при этом старую. Ставится цель за некоторое количество таких операций освободить все шесть отмеченных клеток. Можно ли достигнуть этой цели, если   а) в исходной позиции имеются всего 6 фишек, и они стоят на отмеченных клетках;   б) в исходной позиции имеется всего одна фишка, и она стоит в левой нижней отмеченной клетке.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка