Олимпиадные задачи по математике для 11 класса - сложность 4-5 с решениями

<i>k</i> вершин правильного <i>n</i>-угольника закрашены. Закраска называется <i>почти равномерной</i>, если для любого натурального <i>m</i> верно следующее условие: если <i>M</i><sub>1</sub> – множество <i>m</i> расположенных подряд вершин и <i>M</i><sub>2</sub> – другое такое множество, то количество закрашенных вершин в <i>M</i><sub>1</sub> отличается от количества закрашенных вершин в <i>M</i><sub>2</sub> не больше чем на 1. Доказать, что для любых натуральных <i>n</i> и  <i>k</i> ≤ <i>n</i>  почти равномерная закраска существует и что она единственна с точностью до поворотов закрашенного множест...

На бесконечной клетчатой бумаге отмечено шесть клеток (см. рисунок).

<div align="center"><img src="/storage/problem-media/97775/problem_97775_img_2.gif"></div>На некоторых клетках стоят фишки. Положение фишек разрешается преобразовывать по следующему правилу: если клетки соседняя сверху и соседняя справа от данной фишки обе свободны, то можно поставить в эти клетки по фишке, убрав при этом старую. Ставится цель за некоторое количество таких операций освободить все шесть отмеченных клеток. Можно ли достигнуть этой цели, если   а) в исходной позиции имеются всего 6 фишек, и они стоят на отмеченных клетках;   б) в исходной позиции имеется всего одна фишка, и она стоит в левой нижней отмеченной клетке.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка