Олимпиадные задачи по математике для 6-7 класса - сложность 2 с решениями

В честь праздника 1% солдат в полку получил новое обмундирование. Солдаты расставлены в виде прямоугольника так, что солдаты в новом обмундировании оказались не менее чем в 30% колонн и не менее чем в 40% шеренг. Какое наименьшее число солдат могло быть в полку?

В банановой республике прошли выборы в парламент, в которых участвовали все жители. Все голосовавшие за партию "Мандарин" любят мандарины. Среди голосовавших за другие партии 90% не любят мандарины. Сколько процентов голосов набрала партия "Мандарин" на выборах, если ровно 46% жителей любят мандарины?

Имеется шоколадка с пятью продольными и восемью поперечными углублениями, по которым её можно ломать (всего получается  9·6 = 54  дольки). Играют двое, ходят по очереди. Играющий за свой ход отламывает от шоколадки полоску ширины 1 и съедает её. Другой играющий за свой ход делает то же самое с оставшейся частью, и т. д. Тот, кто разламывает полоску ширины 2 на две полоски ширины 1, съедает одну из них, а другую съедает его партнер. Докажите, что начинающий игру может действовать таким образом, что ему достанется по крайней мере на 6 долек больше, чем второму.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка